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Piecewise Monotone Spline Interpolation
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Let (Xi, Yi), i = 0, 1,..., k, be a set of points, with Xo < Xl < ... < X•. We
prove the existence of a spline function of specified deficiency,j(x), which satisfies
!(Xi) = Yi, i = 0, 1, , k, and which is monotone on each of the intervals
[Xi_l , xiI, i = 1,2, , k.

Let (Xi, Yi), i = 0, 1,..., k, be a set of points in the plane, with
Xo < Xl < ... < Xk' It was shown independently by Wolibner [4] and
Young [5] that if Yi-l 'i= Yi, i = 1, 2,..., k, then there exists a polynomial
p(x) such that P(Xi) = Yi , i = 0, 1,..., k, and p is monotone on each of the
intervals [Xi-I, Xi], i = 1,2,..., k. Both proofs, however, fail to give any
information as to the degree of the polynomial needed. Rubinstein [3] has
obtained such a result, but only in a very restricted case, i.e., when k = 2
and Yo < Yl < Y2 . In this note we consider the problem of piecewise mono­
tone interpolation (PMI), but use splines as our interpolating functions.

DEFINITION. Let Snj = Snj(xo , Xl"'.' Xk), °~j ~ n - 1, be the set of
all functions f E Cj[xo ,Xk] and such that f agrees with a polynomial of
degree ~n on [Xi-I, Xi], i = 1,2,..., k.fE Sn j is said to be a spline of order n
with deficiency n - j. f E Sn = S:-l is called a simple spline of order n
(cf., Ahlberg, Ni'lson, and Walsh [1, p. 7]).

Since Sl consists of all continuous piecewise linear functions, it is clear
that PMI is always possible with functions from Sl . For Sn , n ~ 2, however,
the possibility of PMI will depend upon the data. On the other hand, for
splines of certain specified deficiencies, we have the following result:

THEOREM. Let Xo < Xl < ... < Xk and let Yi' i = 0, 1,... , k, be arbitrary.
Then, for each n, there exists a unique f E S;n+l such that !(Xi) = Yi ,
i = 0, 1, , k, and f is monotone on each of the intervals [Xi-I, Xi],

, i = 1, 2, , k.

Proof On [Xi-I, x;], i = 1,2,..., k, let Pi(X) be the unique polynomial
of degree ~2n + 1 which satisfies the Hermite interpolation problem,
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Pi(Xi-l) = Yi-l' Pi(Xi) = Yi, P~j)(Xi-l} = P~j)(Xi) = 0, j = 1, 2, ... , n (cf.,
Natanson [2, p. 15]). If Yi-l = Yi' then Pi(X) - Yi' If Yi-l =1= Yi, then
consider p/(x), which is a polynomial of degree ~2n. Since p/ has zeros of
multiplicity n at Xi-l and Xi , it can have no other zeros. Thus p/ is of constant
sign on (Xi-I, Xi), so that Pi is strictly monotone on [X;-l' Xi]' Now let
f(x) = p;(x) for X E [Xi-! , Xi], i = 1,2,... , k. Thenf(x;) = Yi , i = 0, k,
fE S;"'+1' and/is monotone on [Xi-I, Xi], i = 1,2,... , k.

Remark 1. The method of the theorem can be used to show that for
each n there exists IE S;';;I which solves the PMI problem. In this case,
however, the interpolating spline is not unique.

Remark 2. The theorem is best possible in the sense that S;n+l are the
splines of minimal deficiency for which PMI is always possible. For consider
Xo = -1, Xl = 0, X2 = 1, x3 = 2; Yo = Yl = 0, Y2 = Y3 = 1. Let I E S~n+1 ,
where j ;:;: n + 1, and suppose that I interpolates the data piecewise mono­
tonely. Then 1=°for XE [-1, 0] and 1= 1 for XE [1, 2]. I must also
satisfy the following:

(a) j(O) = 1'(0) = '" = j(j)(O) = 1'(1) = 1"(1) = '" = j(j)(l) = 0,

(b) fO) = 1, and

(c) j agrees with a polynomial p of degree ~2n + 1 on [0, 1]. Hence
p' is a polynomial of degree ~2n having at least 2j - 1 ;:;: 2n + 1 zeros.
Therefore p' = 0, so that p(x) is a constant. But p(O) = °and p(l) = 1, so
that no suchfE S4"'+1 exists.
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